B.Sc. Semester-II Examination, 2022-23 ELECTRONICS [Honours]

Course ID: 21711 Course Code: SH/ELC/201/C-3(T3)

Course Title: Semiconductor Devices

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any **three** of the following: $1 \times 3 = 3$
 - a) Name two factors on which electrical conductivity of a pure semiconductor depends?
 - b) What is an extrinsic semiconductor?
 - c) What is depletion region of a pn-junction?
 - d) Doping of indium with silicon leads to which type of semiconductor?
 - e) Why collector of a transistor is made larger than emitter and base?
 - f) Write down the relation between mobility and Hall co-efficient

- 2. Answer any **three** of the following:
 - a) What is a BJT? Why is it called so?
 - b) In a transistor, doping level in base is increased slightly. How will it affect (i) collector current and (ii) base current?
 - c) A semiconductor has equal electron and hole concentration of $6\times10^8\text{m}^{-3}$. On doping with certain impurity, electron concentration increases to $8\times10^{12}\text{m}^{-3}$. Identify the new semiconductor and calculate the new hole concentration.
 - d) A germanium diode has a reverse saturation current of $10\mu A$ at 300K. Find the reverse saturation current at 400K.
 - e) Mention one advantage and one disadvantage of JFET.
 - f) Differentiate between intrinsic and extrinsic semiconductor.
- 3. Answer any **two** of the following: $5 \times 2 = 10$
 - a) The built-in potential of a pn-junction diode is 0.7 Volts at room temperature. What will be the approximate value of built-in potential if the doping concentrations on both sides are doubled?

- b) Explain physically the mechanism of conduction of drift current and diffusion current through a semiconductor. Write down their mathematical expressions.
- c) What are 'Hall effect' and 'Hall field'? Explain briefly the physical origin of the Hall effect. Mention some uses of this effect.
- d) Derive the relationship $I_C = \beta I_B + (1+\beta)I_{CO}$ where I_C and I_B are respectively the collector and base currents of a transistor, β is the current gain for CE mode and I_{CO} is the reverse saturation current when the emitter is open circuited and collector junction is reverse biased.
- 4. Answer any **one** of the following: $6 \times 1 = 6$
 - a) Derive the current-voltage relationship for a pnjunction diode. Also draw the characteristic curve.
 - b) Explain with a neat sketch the structure and working of p-channel enhancement-type MOSFET. Draw its typical drain characteristics curves.
 - c) Describe the different modes of operation of SCR with the help of its static I-V characteristics. Define latching and holding currents as applicable to an SCR and show them on the static I-V curve.